Inactivation of specific β cell transcription factors in type 2 diabetes.

نویسندگان

  • Shuangli Guo
  • Chunhua Dai
  • Min Guo
  • Brandon Taylor
  • Jamie S Harmon
  • Maike Sander
  • R Paul Robertson
  • Alvin C Powers
  • Roland Stein
چکیده

Type 2 diabetes (T2DM) commonly arises from islet β cell failure and insulin resistance. Here, we examined the sensitivity of key islet-enriched transcription factors to oxidative stress, a condition associated with β cell dysfunction in both type 1 diabetes (T1DM) and T2DM. Hydrogen peroxide treatment of β cell lines induced cytoplasmic translocation of MAFA and NKX6.1. In parallel, the ability of nuclear PDX1 to bind endogenous target gene promoters was also dramatically reduced, whereas the activity of other key β cell transcriptional regulators was unaffected. MAFA levels were reduced, followed by a reduction in NKX6.1 upon development of hyperglycemia in db/db mice, a T2DM model. Transgenic expression of the glutathione peroxidase-1 antioxidant enzyme (GPX1) in db/db islet β cells restored nuclear MAFA, nuclear NKX6.1, and β cell function in vivo. Notably, the selective decrease in MAFA, NKX6.1, and PDX1 expression was found in human T2DM islets. MAFB, a MAFA-related transcription factor expressed in human β cells, was also severely compromised. We propose that MAFA, MAFB, NKX6.1, and PDX1 activity provides a gauge of islet β cell function, with loss of MAFA (and/or MAFB) representing an early indicator of β cell inactivity and the subsequent deficit of more impactful NKX6.1 (and/or PDX1) resulting in overt dysfunction associated with T2DM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Magnesium Deficiency on Pancreatic β-Cell Function in Type 2 Diabetic Nigerians

Objective: Pancreatic b-cell dysfunction is described to be present at the diagnosis of type 2 diabetes mellitus (T2DM) and progressively deteriorated with disease duration. However, its progression is variable and potentially influenced by several factors. The Magnesium (Mg) deficiency mediates insulin resistance but reports regarding its role in pancreatic β-cell dysfunction are scarce and co...

متن کامل

New Perspectives on the Role of Hyperglycemia, Free Fatty Acid and Oxidative Stress in B-Cell Apoptosis

Apoptosis is a complex network of biochemical and molecular pathway with fine regulatory mechanisms that control the death event during several pathological situations in multi cellular organisms. It is the part of normal development that occurs in a variety of diseases and is known as aberrant apoptosis. Pancreatic β cell apoptosis is also a pathological feature which is common in both type 1 ...

متن کامل

The Effect of Pomegranate and Its Compounds on Breast Cancer: Review Article

Introduction: Pomegranate is a rich source of phytochemicals with high antioxidant effects, which has therapeutic effects in traditional and modern medicine. Pomegranate is effective in the prevention and treatment of cardiovascular diseases, diabetes, obesity, inflammatory diseases, infectious and microbial diseases, neurological disorders and immunity. Today the role of pomegranate in various...

متن کامل

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

متن کامل

MLL3 and MLL4 Methyltransferases Bind to the MAFA and MAFB Transcription Factors to Regulate Islet β-Cell Function

Insulin produced by islet β-cells plays a critical role in glucose homeostasis, with type 1 and type 2 diabetes both resulting from inactivation and/or loss of this cell population. Islet-enriched transcription factors regulate β-cell formation and function, yet little is known about the molecules recruited to mediate control. An unbiased in-cell biochemical and mass spectrometry strategy was u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 123 8  شماره 

صفحات  -

تاریخ انتشار 2013